MAU23101 Introduction to number theory 5 - Binary quadratic forms

Nicolas Mascot mascotn@tcd.ie
Module web page

Michaelmas 2020-2021
Version: November 18, 2020

Trinity College Dublin
Coláiste na Tríonóide, Baile Átha Cliath
The University of Dublin

Representation by forms

Forms (non examinable)

Definition

A form is a homogeneous polynomial (all terms have the same total degree)

Example

$F(x, y, z)=2 x^{5}-7 x y^{3} z+x y z^{3}-9 y^{4} z$ is a ternary quintic form.
Ternary: 3 variables x, y, z.
Quintic: Total degree 5.
In this chapter, we study binary quadratic forms.
Binary: 2 variables x, y.
Quadratic: Total degree 2.

$$
\rightsquigarrow F(x, y)=A x^{2}+B x y+C y^{2}, \quad A, B, C \in \mathbb{Z} .
$$

Representation by a form

Definition ((Proper) representation)

Let $F(x, y)=A x^{2}+B x y+C y^{2}$ be a form, and let $n \in \mathbb{Z}$.

- F represents n if there exist $r, s \in \mathbb{Z}$ such that $n=F(r, s)$.
- F properly represents n if there exist $r, s \in \mathbb{Z}$ such that $n=F(r, s)$ and $\operatorname{gcd}(r, s)=1$.

Remark

$F(d r, d s)=A(d r)^{2}+B(d r)(d s)+C(d s)^{2}=d^{2} F(r, s)$, so F represents $n \Longleftrightarrow n=d^{2} m, d \in \mathbb{N}, m$ properly rep. by F.

Representation by a form

Definition ((Proper) representation)

Let $F(x, y)=A x^{2}+B x y+C y^{2}$ be a form, and let $n \in \mathbb{Z}$.

- F represents n if there exist $r, s \in \mathbb{Z}$ such that $n=F(r, s)$.
- F properly represents n if there exist $r, s \in \mathbb{Z}$ such that $n=F(r, s)$ and $\operatorname{gcd}(r, s)=1$.

Definition (Primitive form)

$F(x, y)=A x^{2}+B x y+C y^{2}$ is primitive if $\operatorname{gcd}(A, B, C)=1$.

Remark

Let $g=\operatorname{gcd}(A, B, C)$.
Then $F(x, y)=g F_{1}(x, y)$, where $F_{1}(x, y)$ is primitive, and F (properly) represents $g n \Longleftrightarrow F_{1}$ (properly) represents n.

Representation by a form

Definition ((Proper) representation)

Let $F(x, y)=A x^{2}+B x y+C y^{2}$ be a form, and let $n \in \mathbb{Z}$.

- F represents n if there exist $r, s \in \mathbb{Z}$ such that $n=F(r, s)$.
- F properly represents n if there exist $r, s \in \mathbb{Z}$ such that $n=F(r, s)$ and $\operatorname{gcd}(r, s)=1$.

Definition (Primitive form)

$F(x, y)=A x^{2}+B x y+C y^{2}$ is primitive if $\operatorname{gcd}(A, B, C)=1$.
\rightsquigarrow We focus on proper representation by primitive forms.

Example

$F(x, y)=x^{2}+y^{2}$ is primitive. For all $p \in \mathbb{N}$ prime, F rep. $p \Longleftrightarrow F$ prop. rep. $p \Longleftrightarrow p \not \equiv-1 \bmod 4$.

Equivalence and discriminant

Discriminant

Definition

The discriminant of $F(x, y)=A x^{2}+B x y+C y^{2}$ is

$$
\Delta_{F}=B^{2}-4 A C
$$

Remark

Mod $4, \Delta_{F} \equiv B^{2} \equiv \begin{cases}0 & \text { if } B \text { even, } \\ 1 & \text { if } B \text { is odd. }\end{cases}$
Conversely, any integer $\equiv 0$ or $1 \bmod 4$ is a discriminant.

Discriminant

Definition

The discriminant of $F(x, y)=A x^{2}+B x y+C y^{2}$ is

$$
\Delta_{F}=B^{2}-4 A C
$$

Remark

$4 A F(x, y)=(2 A x+B y)^{2}-\Delta_{F} y^{2}$, so

- If $\Delta_{F}>0$, then F represents integers of both signs.
- If $\Delta_{F}<0$, then A and C have the same sign, and F only represents integers of that sign.
- If $\Delta_{F}=0$, then F only represents squares times A.

Example

$F(x, y)=x^{2}+y^{2}$ has $\Delta_{F}=-4$, so it only reps. integers >0. $G(x, y)=2 x^{2}+5 x y+y^{2}$ has $\Delta_{G}=17$, so it reps. both signs.

Equivalence of forms, 1/3

Clearly $F(x, y)$ and $F(y, x)$ represent the same integers.
Same for $F(x, y)$ and $F(2 x+y, x+y)$, since if $x^{\prime}=2 x+y$ and $y^{\prime}=x+y$, then $x=x^{\prime}-y^{\prime}$ and $y=2 y^{\prime}-x^{\prime}$.

But (probably) not so for $F(x, y)$ and $F(2 x-y, x+y)$, since if $x^{\prime}=2 x-y$ and $y^{\prime}=x+y$, then $x=\frac{x^{\prime}+y^{\prime}}{3}$ and $y=\frac{2 y^{\prime}-x^{\prime}}{3}$.
\rightsquigarrow We could allow changes of variables of the form

$$
\binom{x^{\prime}}{y^{\prime}}=M\binom{x}{y}
$$

where M is a 2×2 matrix with coefficients in \mathbb{Z}, which is invertible, and whose inverse also has coefficients in \mathbb{Z}.

Equivalence of forms, 2/3

Definition

$$
\mathrm{GL}_{2}(\mathbb{Z})=\left\{M \in \mathscr{M}_{2 \times 2}(\mathbb{Z}) \mid M \text { invertible and } M^{-1} \in \mathscr{M}_{2 \times 2}(\mathbb{Z})\right\} .
$$

Theorem

```
Let \(M \in \mathscr{M}_{2 \times 2}(\mathbb{Z})\). Then
\(M \in \mathrm{GL}_{2}(\mathbb{Z}) \Longleftrightarrow \operatorname{det} M \in \mathbb{Z}^{\times} \Longleftrightarrow \operatorname{det} M= \pm 1\).
```


Proof.

\Rightarrow : If $M \in \mathrm{GL}_{2}(\mathbb{Z})$, then $M M^{-1}=I_{2}$, so

$$
1=\operatorname{det}\left(I_{2}\right)=\operatorname{det}\left(M M^{-1}\right)=\underbrace{\operatorname{det}(M)}_{\in \mathbb{Z}} \underbrace{\operatorname{det}\left(M^{-1}\right)}_{\in \mathbb{Z}} .
$$

\Leftarrow : If $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathscr{M}_{2 \times 2}(\mathbb{Z})$ has $a d-b c= \pm 1$, then

$$
M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \in \mathscr{M}_{2 \times 2}(\mathbb{Z})
$$

Equivalence of forms, 2/3

Theorem

Let $M \in \mathscr{M}_{2 \times 2}(\mathbb{Z})$. Then
$M \in \mathrm{GL}_{2}(\mathbb{Z}) \Longleftrightarrow \operatorname{det} M \in \mathbb{Z}^{\times} \Longleftrightarrow \operatorname{det} M= \pm 1$.

Proof.

\Rightarrow : If $M \in G L_{2}(\mathbb{Z})$, then $M M^{-1}=I_{2}$, so

$$
1=\operatorname{det}\left(I_{2}\right)=\operatorname{det}\left(M M^{-1}\right)=\underbrace{\operatorname{det}(M)}_{\in \mathbb{Z}} \underbrace{\operatorname{det}\left(M^{-1}\right)}_{\in \mathbb{Z}} .
$$

$\Leftarrow:$ If $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathscr{M}_{2 \times 2}(\mathbb{Z})$ has $a d-b c= \pm 1$, then

$$
M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \in \mathscr{M}_{2 \times 2}(\mathbb{Z})
$$

Remark

This is not specific to size 2×2, nor to \mathbb{Z}.

Equivalence of forms, 3/3

Definition

Two forms F_{1} and F_{2} are equivalent, written $F_{1} \sim F_{2}$, if

$$
F_{2}(x, y)=F_{1}(a x+c y, b x+d y)
$$

with $a, b, c, d \in \mathbb{Z}, a d-b c=+1$.
In other words, we only allow changes of variables induced by

$$
M \in \mathrm{SL}_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=+1\right\} .
$$

Remark

Then $F_{1}(x, y)=F_{2}(d x-c y,-b x+a y)$, so $F_{2} \sim F_{1}$. Besides, $F_{1} \sim F_{1}$; and if $F_{1} \sim F_{2} \sim F_{3}$, then $F_{1} \sim F_{3}$. So this really is an equivalence relation.

Equivalence of forms, $3 / 3$

Definition

Two forms F_{1} and F_{2} are equivalent, written $F_{1} \sim F_{2}$, if

$$
F_{2}(x, y)=F_{1}(a x+c y, b x+d y)
$$

with $a, b, c, d \in \mathbb{Z}, a d-b c=+1$.

Proposition

If $F_{1} \sim F_{2}$, then F_{1} and F_{2} represent the same integers, and properly represent the same integers.

Proof.

Let $r, s \in \mathbb{Z}, M \in G L_{2}(\mathbb{Z})$, and $\binom{r^{\prime}}{s^{\prime}}=M\binom{r}{s}$. As $\binom{r}{s}=M^{-1}\binom{r^{\prime}}{s^{\prime}}$, if $d \mid r, s$, then $d \mid r^{\prime}, s^{\prime}$ and vice versa.

Thus $\operatorname{gcd}\left(r^{\prime}, s^{\prime}\right)=\operatorname{gcd}(r, s)$.

Equivalence of forms, 3/3

Definition

Two forms F_{1} and F_{2} are equivalent, written $F_{1} \sim F_{2}$, if

$$
F_{2}(x, y)=F_{1}(a x+c y, b x+d y)
$$

with $a, b, c, d \in \mathbb{Z}, a d-b c=+1$.

Proposition

$$
\text { If } F_{1} \sim F_{2} \text {, then } \Delta_{F_{1}}=\Delta_{F_{2}} \text {. }
$$

Proof.

Calculation.

Lemmas:
 Representation vs. equivalence

Representation vs. equivalence

Lemma

Let $F(x, y)$ be a form, and let $n \in \mathbb{Z}$. Then F properly represents $n \Longleftrightarrow F \sim n x^{2}+B x y+C y^{2}$ for some $B, C \in \mathbb{Z}$.

Proof.

\Leftarrow : The form $n x^{2}+B x y+C y^{2}$ prop. reps. n by $x=1, y=0$.
\Rightarrow : Suppose $F(r, s)=n$, with $r, s \in \mathbb{Z}$ and $\operatorname{gcd}(r, s)=1$.
Bézout \rightsquigarrow there are $u, v \in \mathbb{Z}$ such that $r u+s v=1$. Thus
$M=\left(\begin{array}{cc}r & -v \\ s & u\end{array}\right)$ has $\operatorname{det} M=+1$, and turns $\binom{1}{0}$ into $\binom{r}{s}$. Let
$F^{\prime}=A^{\prime} x^{2}+B^{\prime} x y+C^{\prime} y^{2}$ be the equivalent form obtained by applying M^{-1} to F; then $A^{\prime}=F^{\prime}(1,0)=F(r, s)=n$.

Representation vs. equivalence

Theorem

Let $D \in \mathbb{Z}$ be $\equiv 0$ or $1 \bmod 4$, and let $n \in \mathbb{Z}$ be odd and coprime to D. Then n is properly represented by a primitive form of discriminant $D \Longleftrightarrow D$ is a square $\bmod n$.

Proof.

\Rightarrow : Suppose F has $\Delta_{F}=D$ and prop. represents n. By lemma, $F \sim F^{\prime}=n x^{2}+B x y+C y^{2}$, whence $D=\Delta_{F}=\Delta_{F^{\prime}}=B^{2}-4 n C \equiv B^{2} \bmod n$.
$\Leftarrow: D \equiv B^{2} \bmod n$ for some $B \in \mathbb{Z}$. Replacing B with $B+n$ if necessary, WLOG $B \equiv D \bmod 2$, whence $B^{2} \equiv D \bmod 4$, so $B^{2} \equiv D \bmod 4 n$ by CRT. Thus $B^{2}=D+4 n C$ for some $C \in \mathbb{Z}$, and then $F=n x^{2}+B x y+C y^{2}$ has $\Delta_{F}=D$, prop. reps. n, and is primitive since

$$
d|n, B \Rightarrow d|\left(B^{2}-4 n C\right)=D \text { yet } \operatorname{gcd}(n, D)=1
$$

Representation vs. equivalence

> Theorem
> Let $D \in \mathbb{Z}$ be $\equiv 0$ or $1 \bmod 4$, and let $n \in \mathbb{Z}$ be odd and coprime to D. Then n is properly represented by a primitive form of discriminant $D \Longleftrightarrow D$ is a square $\bmod n$.

Corollary

Let $D \in \mathbb{Z}$ be 0 or $1 \bmod 4$, and let $p \nmid D$ be a prime $\neq 2$. Then p is represented by a form of discriminant $D \Longleftrightarrow\left(\frac{D}{p}\right)=+1$.

Reduced forms

Reduced forms

From now on, we only consider primitive forms

$$
F(x, y)=A x^{2}+B x y+C y^{2}
$$

with $\Delta_{F}<0$ and $A, C>0$.

Definition

Such a form is reduced if $|B| \leq A \leq C$, and if furthermore $B \geq 0$ if $|B|=A$ or if $A=C$.

Theorem

Every form is equivalent to a unique reduced form.

Example

The forms $2 x^{2}+x y+4 y^{2}$ and $2 x^{2}-x y+4 y^{2}$ are both reduced, so they are not equivalent, even though they (properly) represent the same integers!

Proof of existence

Let $F(x, y)=A x^{2}+B x y+C y^{2}$. We first achieve $|B| \leq A \leq C$:

- Let $m \in \mathbb{Z}$ such that $\left|\frac{B}{2 A}-m\right| \leq \frac{1}{2}$; then $|B-2 A m| \leq A$, and

$$
F(x, y) \underset{(1-m)}{\sim} F(x-m y, y)=A x^{2}+(B-2 A m) x y+C^{\prime} y^{2} .
$$

Along this process, $A \in \mathbb{N}$ keeps decreasing, so this must end.
Then we deal with the special cases:

- If $A=-B$, then

$$
\left.F(x, y)=A x^{2}-A x y+C y^{2} \underset{\binom{1}{0}}{\sim} \underset{0}{1}\right)(x+y, y)=A x^{2}+A x y+C y^{2} .
$$

- If $A=C$, then

$$
\left.F(x, y)=A x^{2}-B x y+A y^{2} \underset{\left(\begin{array}{c}
0-1 \\
1
\end{array} 0\right.}{\substack{-1}}\right) F(y,-x)=A x^{2}+B x y+A y^{2} .
$$

Example of reduction

$$
\begin{aligned}
& \text { Let } F(x, y)=11 x^{2}-50 x y+57 y^{2} . \\
& \frac{-50}{2 \times 11}=-2.27 \cdots \approx-2 \text {, so } \\
& \quad F(x, y) \underset{\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)}{\sim} F(x+2 y, y)=11 x^{2}-6 x y+y^{2}=F_{1}(x, y) .
\end{aligned}
$$

$$
11>1 \text {, so }
$$

$$
\left.F_{1}(x, y) \underset{\left(\begin{array}{c}
0-1 \\
1
\end{array} 0\right.}{\sim}{ }^{\sim}\right) ~ F_{1}(y,-x)=x^{2}+6 x y+11 y^{2}=F_{2}(x, y) .
$$

$$
\frac{6}{2 \times 1}=3 \text {, so }
$$

$$
\left.F_{2}(x, y) \underset{\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)}{\sim}{ }^{-3}\right) F_{2}(x-3 y, y)=x^{2}+2 y^{2} .
$$

This is reduced, so we stop: $F(x, y) \sim x^{2}+2 y^{2}$.

Geometric interpretation (non examinable)

To $F(x, y)=A x^{2}+B x y+C y^{2}$,
we attach the root

$$
\tau=\frac{-B+i \sqrt{-D}}{2 A}
$$

of $F(x, 1)=0$ such that $\operatorname{Im} \tau>0$.
We have $\operatorname{Re} \tau=\frac{-B}{2 A}$ and $|\tau|^{2}=\tau \bar{\tau}=\frac{C}{A}$, so $|B| \leq A \leq C \Longleftrightarrow|\operatorname{Re} \tau| \leq \frac{1}{2},|\tau| \geq 1$.

Thus $F(x, y)$ is reduced $\Longleftrightarrow \tau \in \mathscr{F}$.
Besides, $F(x, y)=A(x-y \tau)(x-y \bar{\tau})$ is determined by τ as it is primitive.

Geometric interpretation (non examinable)

Lemma

For all $\tau \in \mathbb{C} \backslash \mathbb{R}$ and $a, b, c, d \in \mathbb{R}$ such that $c, d \neq 0$,

$$
\operatorname{Im} \frac{a \tau+b}{c \tau+d}=\frac{(a d-b c) \operatorname{lm} \tau}{|c \tau+d|^{2}}
$$

Lemma

Hitting $F(x, y)$ with the change of variables corresponding to $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ amounts to replacing τ with $\frac{a \tau+b}{c \tau+d}$.

Let $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$.
Then $S: \tau \mapsto-1 / \tau$ exchanges the inside and the outside of the circle, and for each $m \in \mathbb{Z}, T^{m}=\left(\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right): \tau \mapsto \tau+m$ is the horizontal translation by m.
The reduction algorithm means that any $\tau \in \mathbb{C}, \operatorname{Im} \tau>0$ can be brought into \mathscr{F} by the action of S and T.

Proof of uniqueness (non examinable)

Suppose $F \widetilde{M} F^{\prime}$ are both reduced, where $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$.
We want to show that $F=F^{\prime}$, or alternatively that $\tau=\tau^{\prime}$.

Both τ and $\tau^{\prime}=\frac{a \tau+b}{c \tau+d}$ lie in \mathscr{F}. WLOG $\operatorname{Im} \tau \leq \operatorname{Im} \tau^{\prime}=\frac{\operatorname{Im} \tau}{|c \tau+d|^{2}}$, so

$$
1 \geq|c \tau+d|^{2}=c^{2}|\tau|^{2}+2 c d \operatorname{Re} \tau+d^{2} \geq c^{2}-|c d|+d^{2} .
$$

Expanding $(c \pm d)^{2} \geq 0$ yields $\mp 2 c d \leq c^{2}+d^{2}$, whence $|c d| \leq \frac{c^{2}+d^{2}}{2}$. So we have $1 \geq \frac{c^{2}+d^{2}}{2}$ and therefore $|c| \leq 1$.

Proof of uniqueness (non examinable)

$M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$; both τ and $\tau^{\prime}=\frac{a \tau+b}{c \tau+d}$ lie in \mathscr{F}.
$W L O G \operatorname{Im} \tau \leq \operatorname{Im} \tau^{\prime} \rightsquigarrow|c \tau+d| \leq 1 \rightsquigarrow c \in\{0, \pm 1\}$.
If $c=0$, then $1=\operatorname{det} M=a d$ so $a=d= \pm 1$. Thus $\tau^{\prime}=\tau \pm b$ $\rightsquigarrow b=0, M= \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), F^{\prime}=F$.

Proof of uniqueness (non examinable)

$M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$; both τ and $\tau^{\prime}=\frac{a \tau+b}{c \tau+d}$ lie in \mathscr{F}.
WLOG $\operatorname{Im} \tau \leq \operatorname{Im} \tau^{\prime} \rightsquigarrow|c \tau+d| \leq 1 \rightsquigarrow c \in\{0, \pm 1\}$.
If $c= \pm 1$, then WLOG $c=1$ (replace M with $-M$). Then $|\tau+d| \leq 1$, so $d=0$, unless $\tau=\rho$ and $d=1$.

- If $d=1$, then $1=\operatorname{det} M=a-b$, so

$$
\tau^{\prime}=\frac{a \rho+(a-1)}{\rho+1}=a-\frac{1}{\rho+1}=a+\rho \text { since } \rho^{2}+\rho+1=0 \text {. }
$$

$$
\text { Thus } a=0 \text { and } \tau^{\prime}=\tau=\rho \text {, so } F^{\prime}=F=x^{2}+x y+y^{2} \text {. }
$$

- If $d=0$, then $|\tau| \leq 1$ so $|\tau|=1$ thus $\left|\tau^{\prime}\right|=1$.

Besides, $1=\operatorname{det} M=-b$. Thus $\tau^{\prime}=\frac{a \tau-1}{\tau}=a-\frac{1}{\tau}=a-\bar{\tau}$. Since $\tau, \tau \in \mathscr{F}$, real parts show that either $\tau=i$ and $a=0$, or $\tau=\rho$ and $a=-1$. Either way, $\tau^{\prime}=\tau$, so $F^{\prime}=F$.

Proof of uniqueness (non examinable)

Remark

We have shown that the translates of \mathscr{F} under $\mathrm{SL}_{2}(\mathbb{Z}) / \pm 1$ tesselate the upper half-plane. For this reason, \mathscr{F} is called a fundamental domain.
This also shows that $\mathrm{SL}_{2}(\mathbb{Z})=\langle S, T\rangle$, and even that

$$
\mathrm{SL}_{2}(\mathbb{Z}) / \pm 1_{U=\bar{T}-1 S}\left\langle S, U \mid S^{2}=U^{3}=1\right\rangle \simeq(\mathbb{Z} / 2 \mathbb{Z}) *(\mathbb{Z} / 3 \mathbb{Z}) .
$$

The class number

Summary: Classification of positive definite forms

- Form
- Reduced form

Forms of the same discriminant

Equivalent forms

The class number

Theorem

Let $D \in \mathbb{Z}_{<0}$. There are only finitely many reduced forms of discriminant D.

Proof.

If $A x^{2}+B x y+C y^{2}$ has discriminant $B^{2}-4 A C=D$ and is reduced, then as $|B| \leq A \leq C$, we have
$-D=4 A C-B^{2} \geq 4 A^{2}-A^{2}=3 A^{2}$, whence $A \leq \sqrt{-D / 3}$.
Besides, $-A \leq B \leq A$; and finally $C=\frac{B^{2}-D}{4 A}$ is determined by A and B.

Definition

The class number $h(D)$ is the number of reduced forms of discriminant D.

The class number: example

Example

We determine $h(D)$ for $D=-31$.
Note that as D is odd, B must be odd as well.
We have $A \leq \sqrt{31 / 3}=3.2 \ldots$.

- $A=1$:

$$
\text { - } B= \pm 1 \rightsquigarrow C=\frac{32}{4} \checkmark x \rightsquigarrow x^{2}+x y+8 y^{2}
$$

- $A=2$:
- $B= \pm 1 \rightsquigarrow C=\frac{32}{8} \checkmark \checkmark \rightsquigarrow 2 x^{2} \pm x y+4 y^{2}$
- $A=3$:

$$
\begin{array}{rl}
\text { - } B= \pm 1 \rightsquigarrow C=\frac{32}{12} \notin \mathbb{Z} \\
\text { - } B= \pm 3 \rightsquigarrow C & =10 \\
12 & \mathbb{Z}
\end{array}
$$

$\rightsquigarrow h(-31)=3$.

Application: representability when $h=1$

The class number 1 case

Theorem (Reminder)

Let $D \in \mathbb{Z}$ be 0 or $1 \bmod 4$, and let $n \in \mathbb{Z}$ be odd and coprime to D. Then n is prop. rep. by a primitive form of discriminant $D \Longleftrightarrow D$ is a square $\bmod n$.

Example

Let $n=101$, which is prime. As $\left(\frac{-31}{101}\right)=\cdots=+1$, we conclude that 101 is of the form $x^{2}+x y+8 y^{2}$ or of the form $2 x^{2} \pm x y+4 y^{2}$, maybe both!

The class number 1 case

Corollary

Let F be a form, and $n \in \mathbb{Z}$ odd and coprime to Δ_{F}. If $h\left(\Delta_{F}\right)=1$, then
F properly represents $n \Longleftrightarrow \Delta_{F}$ is a square $\bmod n$.

Corollary

Let F be a form, and let $p \nmid \Delta_{F}$ be prime $\neq 2$. If $h\left(\Delta_{F}\right)=1$,

$$
F \text { represents } p \Longleftrightarrow\left(\frac{\Delta_{F}}{p}\right)=+1 .
$$

Example

$F(x, y)=x^{2}+y^{2}$ has discriminant $D=-4$, and $h(-4)=1$. Thus an odd prime p is represented by $F \Longleftrightarrow\left(\frac{-4}{p}\right)=+1$. Note that $\left(\frac{-4}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{4}{p}\right)=\left(\frac{-1}{p}\right)$.

The class number 1 theorem (non examinable)

Theorem (Baker \& Heegner \& Stark, very difficult)

The only $D \in \mathbb{Z}_{<0}$ such that $h(-D)=1$ are

$$
-3,-4,-7,-8,-11,-12,-16,-19,-27,-28,-43,-67,-163 .
$$

Remark

$$
e^{\pi \sqrt{163}}=262537412640768743.99999999999925 \ldots
$$

