MAU23101 Introduction to number theory 5 - Binary quadratic forms

Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Michaelmas 2020–2021 Version: November 18, 2020

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Representation by forms

Forms (non examinable)

Definition

A <u>form</u> is a homogeneous polynomial (all terms have the same total degree)

Example

$$F(x, y, z) = 2x^5 - 7xy^3z + xyz^3 - 9y^4z$$
 is a ternary quintic form.
Ternary: 3 variables x, y, z .
Quintic: Total degree 5.

In this chapter, we study <u>binary</u> <u>quadratic</u> forms. Binary: 2 variables x, y. Quadratic: Total degree 2.

$$\rightsquigarrow F(x,y) = Ax^2 + Bxy + Cy^2, \quad A, B, C \in \mathbb{Z}.$$

Definition ((Proper) representation)

Let $F(x,y) = Ax^2 + Bxy + Cy^2$ be a form, and let $n \in \mathbb{Z}$.

- F represents n if there exist $r, s \in \mathbb{Z}$ such that n = F(r, s).
- F properly represents n if there exist $r, s \in \mathbb{Z}$ such that n = F(r,s) and gcd(r,s) = 1.

Remark

$$F(dr, ds) = A(dr)^2 + B(dr)(ds) + C(ds)^2 = d^2F(r, s), \text{ so}$$

F represents $n \iff n = d^2m, d \in \mathbb{N}, m$ properly rep. by F.

Representation by a form

Definition ((Proper) representation)

Let $F(x,y) = Ax^2 + Bxy + Cy^2$ be a form, and let $n \in \mathbb{Z}$.

- F represents n if there exist $r, s \in \mathbb{Z}$ such that n = F(r, s).
- F properly represents n if there exist $r, s \in \mathbb{Z}$ such that n = F(r,s) and gcd(r,s) = 1.

Definition (Primitive form)

$$F(x,y) = Ax^2 + Bxy + Cy^2$$
 is primitive if $gcd(A, B, C) = 1$.

Remark

Let g = gcd(A, B, C). Then $F(x, y) = gF_1(x, y)$, where $F_1(x, y)$ is primitive, and F (properly) represents $gn \iff F_1$ (properly) represents n.

Representation by a form

Definition ((Proper) representation)

Let $F(x,y) = Ax^2 + Bxy + Cy^2$ be a form, and let $n \in \mathbb{Z}$.

- F represents n if there exist $r, s \in \mathbb{Z}$ such that n = F(r, s).
- F properly represents n if there exist $r, s \in \mathbb{Z}$ such that n = F(r,s) and gcd(r,s) = 1.

Definition (Primitive form)

$$F(x,y) = Ax^2 + Bxy + Cy^2$$
 is primitive if $gcd(A, B, C) = 1$.

 \rightsquigarrow We focus on proper representation by primitive forms.

Example

$$F(x,y) = x^2 + y^2$$
 is primitive. For all $p \in \mathbb{N}$ prime,
 F rep. $p \iff F$ prop. rep. $p \iff p \not\equiv -1 \mod 4$.

Equivalence and discriminant

Definition

The discriminant of
$$F(x, y) = Ax^2 + Bxy + Cy^2$$
 is
 $\Delta_F = B^2 - 4AC.$

Remark

Mod 4,
$$\Delta_F \equiv B^2 \equiv \begin{cases} 0 & \text{if } B \text{ even,} \\ 1 & \text{if } B \text{ is odd.} \end{cases}$$

Conversely, any integer $\equiv 0$ or $1 \mod 4$ is a discriminant.

Discriminant

Definition

The discriminant of
$$F(x, y) = Ax^2 + Bxy + Cy^2$$
 is
 $\Delta_F = B^2 - 4AC.$

Remark

$$4AF(x,y) = (2Ax + By)^2 - \Delta_F y^2$$
, so

- If $\Delta_F > 0$, then F represents integers of both signs.
- If Δ_F < 0, then A and C have the same sign, and F only represents integers of that sign.
- If $\Delta_F = 0$, then F only represents squares times A.

Example

 $F(x,y) = x^2 + y^2$ has $\Delta_F = -4$, so it only reps. integers > 0. $G(x,y) = 2x^2 + 5xy + y^2$ has $\Delta_G = 17$, so it reps. both signs.

Equivalence of forms, 1/3

Clearly F(x,y) and F(y,x) represent the same integers.

Same for F(x, y) and F(2x + y, x + y), since if x' = 2x + y and y' = x + y, then x = x' - y' and y = 2y' - x'.

But (probably) not so for F(x,y) and F(2x-y,x+y), since if x' = 2x - y and y' = x + y, then $x = \frac{x'+y'}{3}$ and $y = \frac{2y'-x'}{3}$.

 \rightsquigarrow We could allow changes of variables of the form

$$\binom{x'}{y'} = M\binom{x}{y}$$

where *M* is a 2×2 matrix with coefficients in \mathbb{Z} , which is invertible, and whose inverse also has coefficients in \mathbb{Z} .

Equivalence of forms, 2/3

Definition

$$\mathsf{GL}_2(\mathbb{Z}) = \{ M \in \mathcal{M}_{2 \times 2}(\mathbb{Z}) \mid M \text{ invertible and } M^{-1} \in \mathcal{M}_{2 \times 2}(\mathbb{Z}) \}.$$

Theorem

Let
$$M \in \mathcal{M}_{2 \times 2}(\mathbb{Z})$$
. Then
 $M \in GL_2(\mathbb{Z}) \iff \det M \in \mathbb{Z}^{\times} \iff \det M = \pm 1$.

Proof.

$$\Rightarrow: \text{ If } M \in \operatorname{GL}_2(\mathbb{Z}), \text{ then } MM^{-1} = I_2, \text{ so} \\ 1 = \det(I_2) = \det(MM^{-1}) = \underbrace{\det(M)}_{\in \mathbb{Z}} \underbrace{\det(M^{-1})}_{\in \mathbb{Z}}.$$
$$\Leftarrow: \text{ If } M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathscr{M}_{2 \times 2}(\mathbb{Z}) \text{ has } ad - bc = \pm 1, \text{ then} \\ M^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in \mathscr{M}_{2 \times 2}(\mathbb{Z}).$$

Equivalence of forms, 2/3

Theorem

Let $M \in \mathcal{M}_{2 \times 2}(\mathbb{Z})$. Then $M \in GL_2(\mathbb{Z}) \iff \det M \in \mathbb{Z}^{\times} \iff \det M = \pm 1$.

Proof.

$$\Rightarrow: \text{ If } M \in \text{GL}_2(\mathbb{Z}), \text{ then } MM^{-1} = I_2, \text{ so} \\ 1 = \det(I_2) = \det(MM^{-1}) = \underbrace{\det(M)}_{\in \mathbb{Z}} \underbrace{\det(M^{-1})}_{\in \mathbb{Z}}.$$
$$\Leftarrow: \text{ If } M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathscr{M}_{2 \times 2}(\mathbb{Z}) \text{ has } ad - bc = \pm 1, \text{ then} \\ M^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in \mathscr{M}_{2 \times 2}(\mathbb{Z}).$$

Remark

This is not specific to size 2×2 , nor to \mathbb{Z} .

Equivalence of forms, 3/3

Definition

Two forms F_1 and F_2 are <u>equivalent</u>, written $F_1 \sim F_2$, if $F_2(x,y) = F_1(ax + cy, bx + dy)$ with a, b, c, d $\in \mathbb{Z}$, ad - bc = +1. In other words, we only allow changes of variables induced by

$$M \in \mathsf{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}, ad - bc = +1 \right\}.$$

Remark

Then
$$F_1(x,y) = F_2(dx - cy, -bx + ay)$$
, so $F_2 \sim F_1$.
Besides, $F_1 \sim F_1$; and if $F_1 \sim F_2 \sim F_3$, then $F_1 \sim F_3$.
So this really is an equivalence relation.

Equivalence of forms, 3/3

Definition

Two forms
$$F_1$$
 and F_2 are equivalent, written $F_1 \sim F_2$, if
 $F_2(x,y) = F_1(ax + cy, bx + dy)$
with $a, b, c, d \in \mathbb{Z}$, $ad - bc = +1$.

Proposition

If $F_1 \sim F_2$, then F_1 and F_2 represent the same integers, and properly represent the same integers.

Proof.

Let
$$r, s \in \mathbb{Z}$$
, $M \in GL_2(\mathbb{Z})$, and $\binom{r'}{s'} = M\binom{r}{s}$. As $\binom{r}{s} = M^{-1}\binom{r'}{s'}$,
if $d \mid r, s$, then $d \mid r', s'$ and vice versa.
Thus $gcd(r', s') = gcd(r, s)$.

Definition

Two forms F_1 and F_2 are <u>equivalent</u>, written $F_1 \sim F_2$, if $F_2(x, y) = F_1(ax + cy, bx + dy)$ with $a, b, c, d \in \mathbb{Z}$, ad - bc = +1.

Proposition

If
$$F_1 \sim F_2$$
, then $\Delta_{F_1} = \Delta_{F_2}$.

Proof.

Calculation.

Lemmas: Representation vs. equivalence

Lemma

Let F(x,y) be a form, and let $n \in \mathbb{Z}$. Then F properly represents $n \iff F \sim nx^2 + Bxy + Cy^2$ for some $B, C \in \mathbb{Z}$.

Proof.

 \Leftarrow : The form $nx^2 + Bxy + Cy^2$ prop. reps. *n* by x = 1, y = 0.

⇒: Suppose
$$F(r,s) = n$$
, with $r, s \in \mathbb{Z}$ and $gcd(r,s) = 1$.
Bézout \rightsquigarrow there are $u, v \in \mathbb{Z}$ such that $ru + sv = 1$. Thus
 $M = \begin{pmatrix} r & -v \\ s & u \end{pmatrix}$ has det $M = +1$, and turns $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ into $\begin{pmatrix} r \\ s \end{pmatrix}$. Let
 $F' = A'x^2 + B'xy + C'y^2$ be the equivalent form obtained
by applying M^{-1} to F ; then $A' = F'(1,0) = F(r,s) = n$. \Box

Representation vs. equivalence

Theorem

Let $D \in \mathbb{Z}$ be $\equiv 0$ or $1 \mod 4$, and let $n \in \mathbb{Z}$ be odd and coprime to D. Then n is properly represented by a primitive form of discriminant $D \iff D$ is a square mod n.

Proof.

- ⇒: Suppose *F* has $\Delta_F = D$ and prop. represents *n*. By lemma, $F \sim F' = nx^2 + Bxy + Cy^2$, whence $D = \Delta_F = \Delta_{F'} = B^2 4nC \equiv B^2 \mod n$.
- $\Leftarrow: D \equiv B^2 \mod n \text{ for some } B \in \mathbb{Z}. \text{ Replacing } B \text{ with } B + n \text{ if necessary, WLOG } B \equiv D \mod 2, \text{ whence } B^2 \equiv D \mod 4, \text{ so } B^2 \equiv D \mod 4n \text{ by CRT. Thus } B^2 = D + 4nC \text{ for some } C \in \mathbb{Z}, \text{ and then } F = nx^2 + Bxy + Cy^2 \text{ has } \Delta_F = D, \text{ prop. reps. } n, \text{ and is primitive since } d \mid n, B \Rightarrow d \mid (B^2 4nC) = D \text{ yet } gcd(n, D) = 1.$

Theorem

Let $D \in \mathbb{Z}$ be $\equiv 0$ or $1 \mod 4$, and let $n \in \mathbb{Z}$ be odd and coprime to D. Then n is properly represented by a primitive form of discriminant $D \iff D$ is a square mod n.

Corollary

Let $D \in \mathbb{Z}$ be 0 or 1 mod 4, and let $p \nmid D$ be a prime $\neq 2$. Then p is represented by a form of discriminant $D \iff \left(\frac{D}{p}\right) = +1$.

Reduced forms

Reduced forms

From now on, we only consider primitive forms

$$F(x,y) = Ax^2 + Bxy + Cy^2$$

with $\Delta_F < 0$ and A, C > 0.

Definition

Such a form is reduced if $|B| \le A \le C$, and if furthermore $B \ge 0$ if |B| = A or if $\overline{A = C}$.

Theorem

Every form is equivalent to a unique reduced form.

Example

The forms $2x^2 + xy + 4y^2$ and $2x^2 - xy + 4y^2$ are both reduced, so they are <u>not</u> equivalent, even though they (properly) represent the same integers!

Proof of existence

Let $F(x,y) = Ax^2 + Bxy + Cy^2$. We first achieve $|B| \le A \le C$: • If A > C, then $F(x,y) \xrightarrow[\left(\begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix}\right)]{}^{\sim} F(y,-x) = Cx^2 - Bxy + Ay^2$. • Let $m \in \mathbb{Z}$ such that $\left|\frac{B}{2A} - m\right| \le \frac{1}{2}$; then $|B - 2Am| \le A$, and $F(x,y) \xrightarrow[\left(\begin{matrix} 1 & -m \\ 0 & 1 \end{matrix}\right)]{}^{\sim} F(x - my, y) = Ax^2 + (B - 2Am)xy + C'y^2$.

Along this process, $A \in \mathbb{N}$ keeps decreasing, so this must end.

Then we deal with the special cases:

$$F(x,y) = Ax^{2} - Axy + Cy^{2} \sim F(x+y,y) = Ax^{2} + Axy + Cy^{2}.$$

• If
$$A = C$$
, then

$$F(x,y) = Ax^{2} - Bxy + Ay^{2} \sim F(y,-x) = Ax^{2} + Bxy + Ay^{2}.$$

Example of reduction

Let
$$F(x,y) = 11x^2 - 50xy + 57y^2$$
.
 $\frac{-50}{2 \times 11} = -2.27 \dots \approx -2$, so
 $F(x,y) \underset{\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}}{\sim} F(x+2y,y) = 11x^2 - 6xy + y^2 = F_1(x,y)$.

11 > 1, so

$$F_1(x,y) \sim F_1(y,-x) = x^2 + 6xy + 11y^2 = F_2(x,y).$$

$$\frac{6}{2 \times 1} = 3$$
, so
 $F_2(x, y) \sim F_2(x - 3y, y) = x^2 + 2y^2.$

This is reduced, so we stop: $F(x, y) \sim x^2 + 2y^2$.

Geometric interpretation (non examinable)

To
$$F(x, y) = Ax^2 + Bxy + Cy^2$$
,
we attach the root

$$\tau = \frac{-B + i\sqrt{-D}}{2A}$$

of F(x, 1) = 0 such that $\text{Im } \tau > 0$.

We have
$$\operatorname{Re} \tau = \frac{-B}{2A}$$
 and $|\tau|^2 = \tau \overline{\tau} = \frac{C}{A}$,
so $|B| \le A \le C \iff |\operatorname{Re} \tau| \le \frac{1}{2}$, $|\tau| \ge 1$.

Thus F(x, y) is reduced $\iff \tau \in \mathscr{F}$.

Besides,
$$F(x,y) = A(x-y\tau)(x-y\overline{\tau})$$

is determined by τ as it is primitive.

Geometric interpretation (non examinable)

Lemma

For all
$$\tau \in \mathbb{C} \setminus \mathbb{R}$$
 and $a, b, c, d \in \mathbb{R}$ such that $c, d \neq 0$,

$$\operatorname{Im} \frac{a\tau + b}{c\tau + d} = \frac{(ad - bc) \operatorname{Im} \tau}{|c\tau + d|^2}.$$

Lemma

Hitting F(x, y) with the change of variables corresponding to $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ amounts to replacing τ with $\frac{a\tau+b}{c\tau+d}$.

Let $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$. Then $S : \tau \mapsto -1/\tau$ exchanges the inside and the outside of the circle, and for each $m \in \mathbb{Z}$, $T^m = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} : \tau \mapsto \tau + m$ is the horizontal translation by m. The reduction algorithm means that any $\tau \in \mathbb{C}$, $\operatorname{Im} \tau > 0$ can be brought into \mathscr{F} by the action of S and T. Suppose $F \underset{M}{\sim} F'$ are both reduced, where $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$. We want to show that F = F', or alternatively that $\tau = \tau'$.

Both
$$\tau$$
 and $\tau' = \frac{a\tau+b}{c\tau+d}$ lie in \mathscr{F} . WLOG Im $\tau \leq \text{Im } \tau' = \frac{\text{Im }\tau}{|c\tau+d|^2}$, so
 $1 \geq |c\tau+d|^2 = c^2|\tau|^2 + 2cd \operatorname{Re}\tau + d^2 \geq c^2 - |cd| + d^2$.
Expanding $(c \pm d)^2 \geq 0$ yields $\mp 2cd \leq c^2 + d^2$, whence
 $|cd| \leq \frac{c^2+d^2}{2}$. So we have $1 \geq \frac{c^2+d^2}{2}$ and therefore $|c| \leq 1$.

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}); \text{ both } \tau \text{ and } \tau' = \frac{a\tau + b}{c\tau + d} \text{ lie in } \mathscr{F}.$$

WLOG Im $\tau \le \operatorname{Im} \tau' \rightsquigarrow |c\tau + d| \le 1 \rightsquigarrow c \in \{0, \pm 1\}.$

If c = 0, then $1 = \det M = ad$ so $a = d = \pm 1$. Thus $\tau' = \tau \pm b$ $\rightsquigarrow b = 0$, $M = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, F' = F.

Proof of uniqueness (non examinable)

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}); \text{ both } \tau \text{ and } \tau' = \frac{a\tau + b}{c\tau + d} \text{ lie in } \mathscr{F}.$$

WLOG Im $\tau \le \operatorname{Im} \tau' \rightsquigarrow |c\tau + d| \le 1 \rightsquigarrow c \in \{0, \pm 1\}.$

If $c = \pm 1$, then WLOG c = 1 (replace M with -M). Then $|\tau + d| \le 1$, so d = 0, unless $\tau = \rho$ and d = 1.

• If
$$d = 1$$
, then $1 = \det M = a - b$, so
 $\tau' = \frac{a\rho + (a-1)}{\rho + 1} = a - \frac{1}{\rho + 1} = a + \rho$ since $\rho^2 + \rho + 1 = 0$.
Thus $a = 0$ and $\tau' = \tau = \rho$, so $F' = F = x^2 + xy + y^2$.

• If
$$d = 0$$
, then $|\tau| \le 1$ so $|\tau| = 1$ thus $|\tau'| = 1$.
Besides, $1 = \det M = -b$. Thus $\tau' = \frac{a\tau - 1}{\tau} = a - \frac{1}{\tau} = a - \overline{\tau}$.
Since $\tau, \tau \in \mathscr{F}$, real parts show that either $\tau = i$ and $a = 0$,
or $\tau = \rho$ and $a = -1$. Either way, $\tau' = \tau$, so $F' = F$.

Proof of uniqueness (non examinable)

Remark

We have shown that the translates of \mathscr{F} under $SL_2(\mathbb{Z})/\pm 1$ tesselate the upper half-plane. For this reason, \mathscr{F} is called a fundamental domain.

This also shows that $SL_2(\mathbb{Z}) = \langle S, T \rangle$, and even that

 $\operatorname{SL}_2(\mathbb{Z})/\pm 1 = \bigcup_{U=T^{-1}S} \langle S, U \mid S^2 = U^3 = 1 \rangle \simeq (\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/3\mathbb{Z}).$

The class number

Summary: Classification of positive definite forms

The class number

Theorem

Let $D \in \mathbb{Z}_{<0}$. There are only finitely many reduced forms of discriminant D.

Proof.

If $Ax^2 + Bxy + Cy^2$ has discriminant $B^2 - 4AC = D$ and is reduced, then as $|B| \le A \le C$, we have $-D = 4AC - B^2 \ge 4A^2 - A^2 = 3A^2$, whence $A \le \sqrt{-D/3}$. Besides, $-A \le B \le A$; and finally $C = \frac{B^2 - D}{4A}$ is determined by Aand B.

Definition

The <u>class number</u> h(D) is the number of reduced forms of discriminant D.

The class number: example

Example

We determine h(D) for D = -31. Note that as D is odd, B must be odd as well.

We have
$$A \le \sqrt{31/3} = 3.2...$$

• A = 1: • $B = \pm 1 \rightsquigarrow C = \frac{32}{4} \checkmark X \implies x^2 + xy + 8y^2$ • A = 2: • $B = \pm 1 \rightsquigarrow C = \frac{32}{8} \checkmark \checkmark \implies 2x^2 \pm xy + 4y^2$ • A = 3: • $B = \pm 1 \implies C = \frac{32}{12} \notin \mathbb{Z} \implies X$ • $B = \pm 3 \implies C = \frac{40}{12} \notin \mathbb{Z} \implies X$ $\rightsquigarrow h(-31) = 3$.

Application: representability when h = 1

Theorem (Reminder)

Let $D \in \mathbb{Z}$ be 0 or 1 mod 4, and let $n \in \mathbb{Z}$ be odd and coprime to D. Then n is prop. rep. by a primitive form of discriminant $D \iff D$ is a square mod n.

Example

Let n = 101, which is prime. As $\left(\frac{-31}{101}\right) = \cdots = +1$, we conclude that 101 is of the form $x^2 + xy + 8y^2$ or of the form $2x^2 \pm xy + 4y^2$, maybe both!

The class number 1 case

Corollary

Let F be a form, and $n \in \mathbb{Z}$ odd and coprime to Δ_F . If $h(\Delta_F) = 1$, then F properly represents $n \iff \Delta_F$ is a square mod n.

Corollary

Let F be a form, and let $p \nmid \Delta_F$ be prime $\neq 2$. If $h(\Delta_F) = 1$, F represents $p \iff \left(\frac{\Delta_F}{p}\right) = +1$.

Example

 $F(x,y) = x^2 + y^2$ has discriminant D = -4, and h(-4) = 1. Thus an odd prime p is represented by $F \iff \left(\frac{-4}{p}\right) = +1$. Note that $\left(\frac{-4}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{4}{p}\right) = \left(\frac{-1}{p}\right)$. Theorem (Baker & Heegner & Stark, very difficult)

The only $D \in \mathbb{Z}_{<0}$ such that h(-D) = 1 are

Remark

 $e^{\pi\sqrt{163}} = 262537412640768743.999999999999925...$