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Forms (non examinable)

Definition

A form is a homogeneous polynomial (all terms have the same
total degree)

F(x,y,z)=2x>—Txy3z+xyz3 —9y*z is a ternary quintic form.
Ternary: 3 variables x,y, z.
Quintic: Total degree 5.

In this chapter, we study binary quadratic forms.
Binary: 2 variables x,y.
Quadratic: Total degree 2.

wF(x,y):Ax2+Bxy+ Cy2, A B CeZ.
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Representation by a form

Definition ((Proper) representation)

Let F(x,y) = Ax?+ Bxy + Cy? be a form, and let ne Z.
o F represents n if there exist r,s € Z such that n= F(r,s).

e F properly represents n if there exist r,s € Z such that
n=F(r,s) and ged(r,s) =1.

F(dr,ds) = A(dr)?+ B(dr)(ds)+ C(ds)? = d?F(r,s), so
F represents n < n=d?m, d €N, m properly rep. by F.
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Representation by a form

Definition ((Proper) representation)

Let F(x,y)=Ax?+ Bxy + Cy? be a form, and let ne Z.
@ F represents n if there exist r,s € Z such that n= F(r,s).

o F properly represents n if there exist r,s € Z such that
n=F(r,s) and gcd(r,s) = 1.

Definition (Primitive form)
F(x,y) = Ax?+ Bxy + Cy? is primitive if gcd(A, B, C) = 1.

Let g =gcd(A, B, C).
Then F(x,y)=gFi(x,y), where Fi(x,y) is primitive, and
F (properly) represents gn <= F; (properly) represents n.
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Representation by a form
Definition ((Proper) representation)

Let F(x,y) = Ax?+ Bxy + Cy? be a form, and let ne Z.

@ F represents n if there exist r,s € Z such that n= F(r,s).

e F properly represents n if there exist r,s € Z such that
n=F(r,s) and gcd(r,s) =1.

Definition (Primitive form)

F(x,y) = Ax?+ Bxy + Cy? is primitive if gcd(A, B, C) = 1.

~> We focus on proper representation by primitive forms.

F(x,y)=x?+y? is primitive. For all peN prime,
F rep. p < F prop. rep. p < p# -1 mod 4.
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Equivalence and discriminant
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Discriminant

The discriminant of F(x,y) = Ax?+ Bxy + Cy? is
Af=B?-4AC.

0 if B even,

= R2 —
Mod 4, Ar =B —{ 1 if Bis odd.

Conversely, any integer =0 or 1 mod 4 is a discriminant.
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Discriminant

The discriminant of F(x,y) = Ax?>+ Bxy + Cy? is
AfF = B?-4AC.

4AF(x,y) = (2Ax+ By)? - Ary?, so
o If AF>0, then F represents integers of both signs.

e If AF <0, then A and C have the same sign, and F only
represents integers of that sign.

o If AF =0, then F only represents squares times A.

F(x,y)=x?+y? has AF = —4, so it only reps. integers > 0.
G(x,y) =2x%+5xy +y? has Ag =17, so it reps. both signs.
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Equivalence of forms, 1/3

Clearly F(x,y) and F(y,x) represent the same integers.

Same for F(x,y) and F(2x+y,x+y), since if xX'=2x+y and
y'=x+y, then x=x"—y  and y =2y’ —x’

But (probably) not so for F(x,y) and F(2x y,x+y), since

+ 2yx

if xX'=2x—y and y'=x+y, then x= X1y’ and y =

~ We could allow changes of variables of the form
!/
=4[
y y

where M is a 2 x 2 matrix with coefficients in Z, which is
invertible, and whose inverse also has coefficients in Z.
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Equivalence of forms, 2/3

Def|n|t|on

GLy(Z

={M € Mlrx2(Z) | M invertible and M1 € M2 (Z)}.

Theorem

Let M € Mrx2(Z). Then
MeGLy(Z) < detM e Z* < det M = £1.

Proof
=: If MeGLy(Z), then MMt =1, so

1 =det(h) = det(MM~1) = det(M)det(M™1).
—— —— ——

eZ ez

< IfM= (i Z) € M>x2(Z) has ad — bc = +1, then

oL (d —b

= (7). O
ad—bc \— a)EJ%z 2(2)
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Equivalence of forms, 2/3

Theorem

Let M € Mrx2(Z). Then
MeGLy(Z) < detM e 2* < det M = £1.

Proof.

=: If MeGLy(Z), then MM~ =, so
1=det(h) = det(MM~1) = det(M) det(M™1).
——

(VA (VA

= IfM= (i 2) € Mox2(Z) has ad — bc = +1, then
1 d -b
M= «2(2). O
ad—bc(—C 8)6%2 2(2)

This is not specific to size 2 x 2, nor to Z.

Nicolas Mascot Introduction to number theory




Equivalence of forms, 3/3

Two forms F1 and F, are equivalent, written F1 ~ Fy, if
Fa(x,y) = Fi(ax +cy, bx + dy)

with a,b,c,d € 7, ad — bc = +1.

In other words, we only allow changes of variables induced by

MeSLa(z)={(25) | 5,b,c,deZ, ad—be=+1}.

Then Fi(x,y) = Fa(dx—cy,—bx+ay), so Fp ~ F;.
Besides, F~ Fq; and if Fi~F,~Fs, then Fi~ F3.
So this really is an equivalence relation.
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Equivalence of forms, 3/3

Definition

Two forms F1 and F, are equivalent, written F1 ~ Fy, if

Fa(x,y) = Fi(ax+cy, bx + dy)
with a,b,c,d € Z, ad — bc = +1.

Proposition

If Fy ~ Fy, then Fy and F» represent the same integers, and
properly represent the same integers.

Proof.

Let r,s€Z, M e GLy(Z), and (S)zm() As() M- 1(5)

if d|r,s, then d|r’,s" and vice versa.

Thus ged(r',s") = ged(r, s). O
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Equivalence of forms, 3/3

Definition

Two forms F1 and F, are equivalent, written F1 ~ F5, if

Fa(x,y) = Fi(ax+cy, bx + dy)
with a,b,c,d € 7, ad — bc = +1.

Proposition
If F1 ~ F, then Af, =AF,.

Calculation.
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Representation vs. equivalence

Let F(x,y) be a form, and let ne Z. Then F properly
represents n <= F ~ nx®+ Bxy + Cy? for some B,C€Z.

<: The form nx?+ Bxy + Cy? prop. reps. n by x=1, y=0.

=: Suppose F(r,s)=n, with r,s€Z and gcd(r,s) =1.
Bézout ~~ there are u,v e Z such that ru+sv=1. Thus
M = (r _v) has det M = +1, and turns (1) into (r) Let
s u 0 S

F'=A'x?+ B'xy + C'y? be the equivalent form obtained
by applying M1 to F; then A'= F'(1,0) = F(r,s)=n. [
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Representation vs. equivalence

Let DeZ be =0 or 1 mod 4, and let ne Z be odd and
coprime to D. Then n is properly represented by a primitive
form of discriminant D < D is a square mod n.

Proof.

= Suppose F has Ar =D and prop. represents n. By
lemma, F ~ F' = nx?+ Bxy + Cy?, whence
D=Ar=Ap = B2 —4nC = B? mod n.

<: D= B?mod n for some BeZ. Replacing B with B+ n if
necessary, WLOG B = D mod 2, whence B2 =D mod 4,
so B?= D mod 4n by CRT. Thus B%= D +4nC for some
CeZ, and then F = nx?+ Bxy + Cy? has Ag = D, prop.
reps. n, and is primitive since
dIn,B:dI(BQ—4nC)=Dyetgcd(n,D):l. O
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Representation vs. equivalence

Let DeZ be =0 or 1 mod 4, and let ne Z be odd and
coprime to D. Then n is properly represented by a primitive
form of discriminant D < D is a square mod n.

Let DeZ be 0 or 1 mod 4, and let pt D be a prime #2. Then
p is represented by a form of discriminant D < (%) =+1.
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Reduced forms

From now on, we only consider primitive forms
F(x,y) = Ax?+ Bxy + Cy?
with AF <0 and A, C >0.

Definition

Such a form is reduced if |B|< A< C, and if furthermore B =0
ifIBl=AorifA=C.

Every form is equivalent to a unique reduced form.

The forms 2x2 + xy +4y? and 2x% — xy +4y? are both reduced,

so they are not equivalent, even though they (properly)
represent the same integers!
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Proof of existence

Let F(x,y)=Ax?+ Bxy + Cy?. We first achieve |[B|< A< C:
o If A>C, then F(x,y) ~ F(y,—x)=Cx?-Bxy+Ay?.
(2 79)
@ Let me Z such that ‘%—m‘ < %; then |B—-2Am| < A, and

F(x,y) o ~ ) F(x—my,y)=Ax?>+(B-2Am)xy + C'y?.
—-m
01
Along this process, A€ N keeps decreasing, so this must end.

Then we deal with the special cases:
e If A=-B, then

F(x,y)= Ax2—Axy+ Cy2 ( ~1) F(x+y,y)= Ax2+Axy+ Cy2.

o1
o If A=C, then
F(x,y) = AX*~Bxy+Ay? 0~1)F(y,—x):Ax2+Bxy+Ay2.
10
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Example of reduction

Let F(x,y)=11x?—50xy +57y>.
-50

m:—2.27"':—2, SO
F(x,y) ) F(x+2y,y):11x2—6xy+y2:F1(X,y).
01)
11>1, so
Fi(x,y) o1 Fi(y,—x) = x> +6xy + 11y% = F2(x,y).
(179)
597 =3, 50
FZ(X)y) (1~3) F2(X_3y,)’) :X2+2y2-
01

This is reduced, so we stop: F(x,y) ~ X2 +2y°.



Geometric interpretation (non examinable)

To F(x,y) = Ax? + Bxy + Cy?, Imz
we attach the root

-B+iv-D
2A
of F(x,1) =0 such that Im7 > 0.

T =

(\Nn

We have Ret = EA and |T|2 =17 %,
SO|B|SASC<:>|RGT|_ LTl =1

_p_l/ P

Thus F(x,y) is reduced <= 1€ Z.

Besides, F(x,y)=A(x—y1)(x—yT) :
is determined by 7 as it is primitive. -1 -1/2 12 1
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Geometric interpretation (non examinable)

Lemma

For all Te C\R and a,b,c,d €R such that c,d #0,
ar+b (ad-bc)lmz
ct+d et +d)?

Lemma
Hitting F(x,y) with the change of variables corresponding

to (2 5) € SLo(Z) amounts to replacing T with ?;:2

et $=(09), T=(31) e SLy(2).
Then S: 17— —1/7 exchanges the inside and the outside of the
circle, and for each mez, T" = (é T):T—T+mis the
horizontal translation by m.

The reduction algorithm means that any 7€ C, Im7 >0 can be
brought into & by the action of S and T.
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Proof of uniqueness (non examinable)

Suppose FA~/IF’ are both reduced, where M = (2 ) e SL»(2).

We want to show that F = F’, or alternatively that 7 =1'.

/I _ at+b |, : r_ _Imzt
Both 7 and 7/ = e liein . WLOG Imt<Im1'= Credi SO

1= |cr+d|2 = C2|T|2+2CdReT+d2 >c%- |cd| +d2.

Expanding (c+d)? =0 yields ¥2cd < ¢+ d?, whence

2 2 2 2
led] < & Ed . Sowe have 1= € ;d and therefore |c| < 1.
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Proof of uniqueness (non examinable)

M = (? 2) € SLy(Z); both 7 and 7' = 212 lie in &.

WLOG ImT<Imt’ ~ |cT+d| <1 ~ c€{0,+1}.

If c=0, then 1=detM=ad so a=d=+1. Thust'=7+b
~b=0, M=£(}9), F'=F.
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Proof of uniqueness (non examinable)

M = (g 2) € SLy(Z); both 7 and 7' = ?”2 lie in .

T+

WLOG ImT<Imt’ ~ |cT+d| <1 ~ c€{0,+1}.

If c==1, then WLOG c =1 (replace M with —M). Then
[T+dl<1,sod=0, unlesst=p and d=1.

o lfd=1,thenl1=detM=a-b, so
’—%:a—ﬁ:aﬂo since p2+p+1=0.

Thus a=0and ' =7=p, so F' = F=x>+xy +y°.

o If d=0, then |t|<1so |7|=1 thus |7/| = 1.
Besides, 1 =det M =—b. Thus 7/ = %‘1 = a—% =a-T.
Since 17,7 € &, real parts show that either t=/ and a=0,
ort=p and a=-1. Either way, 7' =71, so F' =F. [
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Proof of uniqueness (non examinable)

We have shown that the translates of & under SLo(Z)/ +1

tesselate the upper half-plane. For this reason, & is called a

fundamental domain.

This also shows that SL(Z) = (S, T> and even that
SLy(2)/ +1 (S,U|S%= ~(2/22) *(2/32).

U=T-15

14

USF SU2F

1.2

SusF
_/UsU?sz

!

-2.0 -1.5 - -0. 0
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The class number
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Summary: Classification of positive definite forms

[(. . e ) (o . e ) (o ° o ...>\D:_31

[(o . . . ) . . . . . o .. ->\D - 67

(. J

® Form :} Forms of the same discriminant
® Reduced form :} Equivalent forms
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The class number

Theorem

Let D€ Z.y. There are only finitely many reduced forms of
discriminant D.

Proof.

If Ax?+ Bxy + Cy? has discriminant B2 —4AC =D and is
reduced, then as |B| < A< C, we have
~D=4AC-B2=4A% - A% =3A?, whence A< /-D/3.
Besides, —A< B < A; and finally C = BZ;\D is determined by A
and B. ]

Definition

The class number h(D) is the number of reduced forms of
discriminant D.
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The class number: example

We determine h(D) for D = —-31.
Note that as D is odd, B must be odd as well.
We have A</31/3=3.2....
o A=1:
° B=i1WC=% VX ~x%+xy+8y?
e A=2:
° B:iIWC=3—82 V'V o~ 2x2 + xy + by?
e A=3:
o B=41~~ C= 247 X
e B=43~ C:12€Z X
~ h(-31)=3.
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Application: representability
when h=1
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The class number 1 case

Theorem (Reminder)

Let DeZ be 0 or 1 mod 4, and let ne Z be odd and coprime
to D. Then n is prop. rep. by a primitive form of discriminant
D < D is a square mod n.

Let n=101, which is prlme As ( 1) =...= +1, we conclude
that 101 is of the form x +xy+8y or of the form
2x% + xy +4y?, maybe both!

I\J—‘
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The class number 1 case

Corollary

Let F be a form, and ne Z odd and coprime to Ar. If
h(Afg) =1, then
F properly represents n < Af is a square mod n.

Corollary

Let F be a form, and let p{ Ar be prime #2. If h(Af) =1,

F represents p <— (A—pF) =+1.

F(x,y) = x%+y? has discriminant D = -4, and h(-4) =1.
=+1.

Thus an odd prime p is represented by F < (
e i 9= () (8- ().
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The class number 1 theorem (non examinable)

Theorem (Baker & Heegner & Stark, very difficult)
The only D € Zy such that h(-D) =1 are

-3,-4,-7,-8,-11, -12, -16, —-19, -27, -28, —43, —67, —163.

V163 _ 262537412640768743.99999999999925 ..
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