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Forms (non examinable)

Definition
A form is a homogeneous polynomial (all terms have the same
total degree)

Example

F (x ,y ,z)= 2x5−7xy3z +xyz3−9y4z is a ternary quintic form.
Ternary: 3 variables x ,y ,z .
Quintic: Total degree 5.

In this chapter, we study binary quadratic forms.
Binary: 2 variables x ,y .
Quadratic: Total degree 2.

 F (x ,y)=Ax2+Bxy +Cy2, A,B ,C ∈Z.
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Representation by a form

Definition ((Proper) representation)

Let F (x ,y)=Ax2+Bxy +Cy2 be a form, and let n ∈Z.
F represents n if there exist r ,s ∈Z such that n= F (r ,s).
F properly represents n if there exist r ,s ∈Z such that
n= F (r ,s) and gcd(r ,s)= 1.

Remark
F (dr ,ds)=A(dr)2+B(dr)(ds)+C (ds)2 = d2F (r ,s), so
F represents n ⇐⇒ n= d2m, d ∈N, m properly rep. by F .
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Representation by a form

Definition ((Proper) representation)

Let F (x ,y)=Ax2+Bxy +Cy2 be a form, and let n ∈Z.
F represents n if there exist r ,s ∈Z such that n= F (r ,s).
F properly represents n if there exist r ,s ∈Z such that
n= F (r ,s) and gcd(r ,s)= 1.

Definition (Primitive form)

F (x ,y)=Ax2+Bxy +Cy2 is primitive if gcd(A,B ,C )= 1.

Remark
Let g = gcd(A,B ,C ).
Then F (x ,y)= gF1(x ,y), where F1(x ,y) is primitive, and
F (properly) represents gn ⇐⇒ F1 (properly) represents n.
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Representation by a form

Definition ((Proper) representation)

Let F (x ,y)=Ax2+Bxy +Cy2 be a form, and let n ∈Z.
F represents n if there exist r ,s ∈Z such that n= F (r ,s).
F properly represents n if there exist r ,s ∈Z such that
n= F (r ,s) and gcd(r ,s)= 1.

Definition (Primitive form)

F (x ,y)=Ax2+Bxy +Cy2 is primitive if gcd(A,B ,C )= 1.

 We focus on proper representation by primitive forms.

Example

F (x ,y)= x2+y2 is primitive. For all p ∈N prime,
F rep. p ⇐⇒ F prop. rep. p ⇐⇒ p 6≡ −1 mod 4.
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Equivalence and discriminant
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Discriminant

Definition
The discriminant of F (x ,y)=Ax2+Bxy +Cy2 is

∆F =B2−4AC .

Remark

Mod 4, ∆F ≡B2 ≡
{
0 if B even,
1 if B is odd.

Conversely, any integer ≡ 0 or 1 mod 4 is a discriminant.
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Discriminant
Definition
The discriminant of F (x ,y)=Ax2+Bxy +Cy2 is

∆F =B2−4AC .

Remark
4AF (x ,y)= (2Ax +By)2−∆F y

2, so
If ∆F > 0, then F represents integers of both signs.
If ∆F < 0, then A and C have the same sign, and F only
represents integers of that sign.
If ∆F = 0, then F only represents squares times A.

Example

F (x ,y)= x2+y2 has ∆F =−4, so it only reps. integers > 0.
G (x ,y)= 2x2+5xy +y2 has ∆G = 17, so it reps. both signs.
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Equivalence of forms, 1/3

Clearly F (x ,y) and F (y ,x) represent the same integers.

Same for F (x ,y) and F (2x +y ,x +y), since if x ′ = 2x +y and
y ′ = x +y , then x = x ′−y ′ and y = 2y ′−x ′.

But (probably) not so for F (x ,y) and F (2x −y ,x +y), since

if x ′ = 2x −y and y ′ = x +y , then x = x ′+y
3

′
and y = 2y ′−x ′

3 .

 We could allow changes of variables of the form(
x ′

y ′
)
=M

(
x
y

)
where M is a 2×2 matrix with coefficients in Z, which is
invertible, and whose inverse also has coefficients in Z.
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Equivalence of forms, 2/3

Definition
GL2(Z)=

{
M ∈M2×2(Z) | M invertible and M−1 ∈M2×2(Z)

}
.

Theorem
Let M ∈M2×2(Z). Then
M ∈GL2(Z)⇐⇒ detM ∈Z× ⇐⇒ detM =±1.

Proof.
⇒: If M ∈GL2(Z), then MM−1 = I2, so

1= det(I2)= det(MM−1)= det(M)︸ ︷︷ ︸
∈Z

det(M−1)︸ ︷︷ ︸
∈Z

.

⇐: If M =
(
a b
c d

)
∈M2×2(Z) has ad −bc =±1, then

M−1 = 1
ad −bc

(
d −b
−c a

)
∈M2×2(Z).
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Equivalence of forms, 2/3

Theorem
Let M ∈M2×2(Z). Then
M ∈GL2(Z)⇐⇒ detM ∈Z× ⇐⇒ detM =±1.

Proof.
⇒: If M ∈GL2(Z), then MM−1 = I2, so

1= det(I2)= det(MM−1)= det(M)︸ ︷︷ ︸
∈Z

det(M−1)︸ ︷︷ ︸
∈Z

.

⇐: If M =
(
a b
c d

)
∈M2×2(Z) has ad −bc =±1, then

M−1 = 1
ad −bc

(
d −b
−c a

)
∈M2×2(Z).

Remark
This is not specific to size 2×2, nor to Z.
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Equivalence of forms, 3/3

Definition
Two forms F1 and F2 are equivalent, written F1 ∼ F2, if

F2(x ,y)= F1(ax +cy ,bx +dy)

with a,b,c ,d ∈Z, ad −bc =+1.
In other words, we only allow changes of variables induced by

M ∈ SL2(Z)=
{(

a b
c d

) | a,b,c ,d ∈Z, ad −bc =+1} .

Remark
Then F1(x ,y)= F2(dx −cy ,−bx +ay), so F2 ∼ F1.
Besides, F1 ∼ F1; and if F1 ∼ F2 ∼ F3, then F1 ∼ F3.
So this really is an equivalence relation.
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Equivalence of forms, 3/3

Definition
Two forms F1 and F2 are equivalent, written F1 ∼ F2, if

F2(x ,y)= F1(ax +cy ,bx +dy)

with a,b,c ,d ∈Z, ad −bc =+1.

Proposition
If F1 ∼ F2, then F1 and F2 represent the same integers, and
properly represent the same integers.

Proof.

Let r ,s ∈Z, M ∈GL2(Z), and
(
r ′

s ′
)
=M

(
r
s

)
. As

(
r
s

)
=M−1

(
r ′

s ′
)
,

if d | r ,s, then d | r ′,s ′ and vice versa.

Thus gcd(r ′,s ′)= gcd(r ,s).
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Equivalence of forms, 3/3

Definition
Two forms F1 and F2 are equivalent, written F1 ∼ F2, if

F2(x ,y)= F1(ax +cy ,bx +dy)

with a,b,c ,d ∈Z, ad −bc =+1.

Proposition
If F1 ∼ F2, then ∆F1 =∆F2 .

Proof.
Calculation.
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Lemmas:
Representation vs. equivalence
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Representation vs. equivalence

Lemma
Let F (x ,y) be a form, and let n ∈Z. Then F properly
represents n ⇐⇒ F ∼ nx2+Bxy +Cy2 for some B ,C ∈Z.

Proof.
⇐: The form nx2+Bxy +Cy2 prop. reps. n by x = 1, y = 0.
⇒: Suppose F (r ,s)= n, with r ,s ∈Z and gcd(r ,s)= 1.

Bézout  there are u,v ∈Z such that ru+ sv = 1. Thus

M =
(
r −v
s u

)
has detM =+1, and turns

(
1
0

)
into

(
r
s

)
. Let

F ′ =A′x2+B ′xy +C ′y2 be the equivalent form obtained
by applying M−1 to F ; then A′ = F ′(1,0)= F (r ,s)= n.
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Representation vs. equivalence

Theorem
Let D ∈Z be ≡ 0 or 1 mod 4, and let n ∈Z be odd and
coprime to D. Then n is properly represented by a primitive
form of discriminant D ⇐⇒ D is a square mod n.

Proof.
⇒: Suppose F has ∆F =D and prop. represents n. By

lemma, F ∼ F ′ = nx2+Bxy +Cy2, whence
D =∆F =∆F ′ =B2−4nC ≡B2 mod n.

⇐: D ≡B2 mod n for some B ∈Z. Replacing B with B +n if
necessary, WLOG B ≡D mod 2, whence B2 ≡D mod 4,
so B2 ≡D mod 4n by CRT. Thus B2 =D+4nC for some
C ∈Z, and then F = nx2+Bxy +Cy2 has ∆F =D, prop.
reps. n, and is primitive since
d | n,B ⇒ d | (B2−4nC )=D yet gcd(n,D)= 1.
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Representation vs. equivalence

Theorem
Let D ∈Z be ≡ 0 or 1 mod 4, and let n ∈Z be odd and
coprime to D. Then n is properly represented by a primitive
form of discriminant D ⇐⇒ D is a square mod n.

Corollary
Let D ∈Z be 0 or 1 mod 4, and let p -D be a prime 6= 2. Then
p is represented by a form of discriminant D ⇐⇒

(
D
p

)
=+1.
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Reduced forms
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Reduced forms
From now on, we only consider primitive forms

F (x ,y)=Ax2+Bxy +Cy2

with ∆F < 0 and A,C > 0.

Definition
Such a form is reduced if |B | ≤A≤C , and if furthermore B ≥ 0
if |B | =A or if A=C .

Theorem
Every form is equivalent to a unique reduced form.

Example

The forms 2x2+xy +4y2 and 2x2−xy +4y2 are both reduced,
so they are not equivalent, even though they (properly)
represent the same integers!
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Proof of existence
Let F (x ,y)=Ax2+Bxy +Cy2. We first achieve |B | ≤A≤C :

If A>C , then F (x ,y) ∼
(0 −1
1 0 )

F (y ,−x)=Cx2−Bxy +Ay2.

Let m ∈Z such that
∣∣∣ B
2A −m

∣∣∣≤ 1
2 ; then |B−2Am| ≤A, and

F (x ,y) ∼
(1 −m
0 1 )

F (x −my ,y)=Ax2+ (B −2Am)xy +C ′y2.

Along this process, A ∈N keeps decreasing, so this must end.

Then we deal with the special cases:
If A=−B , then
F (x ,y)=Ax2−Axy+Cy2 ∼

(1 1
0 1)

F (x+y ,y)=Ax2+Axy+Cy2.

If A=C , then

F (x ,y)=Ax2−Bxy+Ay2 ∼
(0 −1
1 0 )

F (y ,−x)=Ax2+Bxy+Ay2.
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Example of reduction
Let F (x ,y)= 11x2−50xy +57y2.

−50
2×11 =−2.27 · · · ≈ −2, so

F (x ,y) ∼
(1 2
0 1)

F (x +2y ,y)= 11x2−6xy +y2 = F1(x ,y).

11> 1, so

F1(x ,y) ∼
(0 −1
1 0 )

F1(y ,−x)= x2+6xy +11y2 = F2(x ,y).

6
2×1 = 3, so

F2(x ,y) ∼
(1 −3
0 1 )

F2(x −3y ,y)= x2+2y2.

This is reduced, so we stop: F (x ,y)∼ x2+2y2.
Nicolas Mascot Introduction to number theory



Geometric interpretation (non examinable)

To F (x ,y)=Ax2+Bxy +Cy2,
we attach the root

τ= −B + i
p−D

2A
of F (x ,1)= 0 such that Imτ> 0.

We have Reτ= −B
2A and |τ|2 = ττ= C

A ,
so |B | ≤A≤C ⇐⇒|Reτ| ≤ 1

2 , |τ| ≥ 1.

Thus F (x ,y) is reduced ⇐⇒ τ ∈F .

Besides, F (x ,y)=A(x −yτ)(x −yτ)
is determined by τ as it is primitive.

Reτ

Imτ

−1 1−1/2 1/2

F

iρ
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Geometric interpretation (non examinable)

Lemma
For all τ ∈C\R and a,b,c ,d ∈R such that c ,d 6= 0,

Im
aτ+b

cτ+d
= (ad −bc) Imτ

|cτ+d |2 .

Lemma
Hitting F (x ,y) with the change of variables corresponding
to

(
a b
c d

) ∈ SL2(Z) amounts to replacing τ with aτ+b
cτ+d .

Let S = (0 −1
1 0 ) ,T = (1 1

0 1) ∈ SL2(Z).
Then S : τ 7→ −1/τ exchanges the inside and the outside of the
circle, and for each m ∈Z, Tm = (1 m

0 1 ) : τ 7→ τ+m is the
horizontal translation by m.
The reduction algorithm means that any τ ∈C, Imτ> 0 can be
brought into F by the action of S and T .
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Proof of uniqueness (non examinable)

Suppose F ∼
M
F ′ are both reduced, where M = (

a b
c d

) ∈ SL2(Z).

We want to show that F = F ′, or alternatively that τ= τ′.

Both τ and τ′ = aτ+b
cτ+d lie in F . WLOG Imτ≤ Imτ′ = Imτ

|cτ+d |2 , so

1≥ |cτ+d |2 = c2|τ|2+2cd Reτ+d2 ≥ c2−|cd |+d2.

Expanding (c ±d)2 ≥ 0 yields ∓2cd ≤ c2+d2, whence
|cd | ≤ c2+d2

2 . So we have 1≥ c2+d2

2 and therefore |c | ≤ 1.
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Proof of uniqueness (non examinable)

M = (
a b
c d

) ∈ SL2(Z); both τ and τ′ = aτ+b
cτ+d lie in F .

WLOG Imτ≤ Imτ′  |cτ+d | ≤ 1  c ∈ {0,±1}.

If c = 0, then 1= detM = ad so a= d =±1. Thus τ′ = τ±b
 b = 0, M =±(1 0

0 1), F
′ = F .
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Proof of uniqueness (non examinable)

M = (
a b
c d

) ∈ SL2(Z); both τ and τ′ = aτ+b
cτ+d lie in F .

WLOG Imτ≤ Imτ′  |cτ+d | ≤ 1  c ∈ {0,±1}.

If c =±1, then WLOG c = 1 (replace M with −M). Then
|τ+d | ≤ 1, so d = 0, unless τ= ρ and d = 1.

If d = 1, then 1= detM = a−b, so
τ′ = aρ+(a−1)

ρ+1 = a− 1
ρ+1 = a+ρ since ρ2+ρ+1= 0.

Thus a= 0 and τ′ = τ= ρ, so F ′ = F = x2+xy +y2.

If d = 0, then |τ| ≤ 1 so |τ| = 1 thus |τ′| = 1.
Besides, 1= detM =−b. Thus τ′ = aτ−1

τ
= a− 1

τ
= a−τ.

Since τ,τ ∈F , real parts show that either τ= i and a= 0,
or τ= ρ and a=−1. Either way, τ′ = τ, so F ′ = F .
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Proof of uniqueness (non examinable)
Remark
We have shown that the translates of F under SL2(Z)/±1
tesselate the upper half-plane. For this reason, F is called a
fundamental domain.
This also shows that SL2(Z)= 〈S ,T 〉, and even that
SL2(Z)/±1 =

U=T−1S
〈S ,U | S2 =U3 = 1〉 ' (Z/2Z)∗ (Z/3Z).

-2.0 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4
F SU2FUSF

SF SU2SFUF

USU2SF

USU2F U2SF U2F SUSF SUF

SU2SUSF

SU2SUF
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The class number
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Summary: Classification of positive definite forms

D =−4
· · ·

D =−31· · · · · · · · ·

D =−40· · ·· · ·

D =−67· · ·
...

Form

Reduced form

Forms of the same discriminant

Equivalent forms
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The class number

Theorem
Let D ∈Z<0. There are only finitely many reduced forms of
discriminant D.

Proof.
If Ax2+Bxy +Cy2 has discriminant B2−4AC =D and is
reduced, then as |B | ≤A≤C , we have
−D = 4AC −B2 ≥ 4A2−A2 = 3A2, whence A≤√−D/3.
Besides, −A≤B ≤A; and finally C = B2−D

4A is determined by A
and B .

Definition
The class number h(D) is the number of reduced forms of
discriminant D.
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The class number: example

Example
We determine h(D) for D =−31.
Note that as D is odd, B must be odd as well.

We have A≤√
31/3= 3.2 . . . .

A= 1:
B =±1 C = 32

4 37  x2+xy +8y2

A= 2:
B =±1 C = 32

8 33  2x2±xy +4y2

A= 3:
B =±1 C = 32

12 6∈Z 7

B =±3 C = 40
12 6∈Z 7

 h(−31)= 3.
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Application: representability
when h= 1
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The class number 1 case

Theorem (Reminder)

Let D ∈Z be 0 or 1 mod 4, and let n ∈Z be odd and coprime
to D. Then n is prop. rep. by a primitive form of discriminant
D ⇐⇒ D is a square mod n.

Example

Let n= 101, which is prime. As
(−31
101

)= ·· · =+1, we conclude
that 101 is of the form x2+xy +8y2 or of the form
2x2±xy +4y2, maybe both!
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The class number 1 case

Corollary
Let F be a form, and n ∈Z odd and coprime to ∆F . If
h(∆F )= 1, then

F properly represents n ⇐⇒ ∆F is a square mod n.

Corollary
Let F be a form, and let p -∆F be prime 6= 2. If h(∆F )= 1,

F represents p ⇐⇒
(
∆F
p

)
=+1.

Example

F (x ,y)= x2+y2 has discriminant D =−4, and h(−4)= 1.
Thus an odd prime p is represented by F ⇐⇒

(
−4
p

)
=+1.

Note that
(
−4
p

)
=

(
−1
p

)(
4
p

)
=

(
−1
p

)
.
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The class number 1 theorem (non examinable)

Theorem (Baker & Heegner & Stark, very difficult)

The only D ∈Z<0 such that h(−D)= 1 are

−3, −4, −7, −8, −11, −12, −16, −19, −27, −28, −43, −67, −163.

Remark

eπ
p

163 = 262537412640768743.99999999999925 . . .
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